The ICE Project at McGill University
Eric Barnett1,2, Jorge Angeles1,2, Damiano Pasini2, and Pieter Sijpkes2
Centre for Intelligent Machines1, Department of Mechanical Engineering2, and School of Architecture3, Montreal, Quebec

Introduction
- Over the past few decades, P. Sijpkes has led several manual ice construction projects at McGill
- The objective of the Ice Project is to develop computer-assisted ice construction techniques
- Here we present the Cobra 600 rapid freeze prototyping (RFP) system
- Ice parts are built by depositing water and shortening methyl ester (SME) scaffolding through nozzles, which are positioned by the Cobra 600

Dispensing Subsystem
- The dispensing subsystem supplies water and shortening methyl ester (SME) to the robot end effector
- A portable air tank is used to pressurize the materials in liquid form
- Air pressure is regulated to the dispensing pressure desired for each material
- Micro-solenoid valves mounted in the Cobra 600 end effector control material flow

Generation of RFP Control Data
- RFP trajectory and valve control data is generated using rpslice, a Matlab algorithm we’ve developed
- The input file format is STL or PLY, which can be generated from almost any CAD program
- The James McGill STL file was generated by 3D-scanning a 30 cm-high bronze statue

Information Flow During Part Construction
- Part construction is initiated when the deposition control program is executed on the Cobra controller
- A PC on the local network acts as a terminal for the controller
- During construction, the controller accesses trajectory and valve signal control data stored on the PC
- 12 V digital signals from the Cobra controller are used to select the dispensing state
- There are two dispensing states for each valve, which correspond to boundary and fill paths

The Build Process
- A part is manufactured layer-by-layer
- Two ice layers are built for every shortening methyl ester (SME) layer
- The bulk of the SME is removed manually and saved for re-use
- The model is placed in kerosene for several hours to remove the SME remnants
- Ice statue characteristics:
 - 30 cm high
 - 862 layers thick
 - 132 hours to build
 - 24 million trajectory points followed

Future Work
- Improvement of the accuracy, robustness and speed of the Cobra 600 RFP system
- Testing and installation of a deposition feedback system
- Configuration of the system for use by those who don’t have specific technical expertise

Acknowledgments
- The generous rebate received from Adept Technology is gratefully acknowledged

References

http://www.cim.mcgill.ca/rsml/index/ice/index.htmlebarnett@cim.mcgill.ca, angeles@cim.mcgill.ca, damiano.pasini@mcgill.ca, pieter.sijpkes@mcgill.ca