Suspended high-rise

1. Gravity load path
2. Differential deflection
3. Prestress to reduce deflection
4. Ground anchors for stability

Challenges
- Load path detour: load travels up to top, then down to foundation
- Combined hanger / column deflection yields large differential deflection

Architectural rational
- Column-free ground floor
- Planning flexibility at ground floor
- Facilitates top down future expansion with minimal operation interference
- Small hangers replace large columns

Structural rational
- Eliminates buckling in hangers, replacing compression by tension
- High-strength hangers replace large compression columns
- Concentration of compression to a few large columns minimizes buckling

Options
- Multiple towers to reduce lateral drift
- Multiple stacks control deflection
- Adjust hangers for DL and partial LL to reduce deflection
- Prestress hangers to reduce deflection
BMW headquarters Munich
Architect: Karl Schwanzer

Standard Bank Center, Johannesburg
Architect: Hentrich and Petschnigg
Hypo Bank Munich

Architect: Bea and Walter Betz

Four circular towers support a mid-level mechanical floor that supports the floors above while those below are suspended from it.
Design objectives:
Independent expansion of conference center and offices was required

Triangular grid allows horizontal expansion of conference center in three directions

Suspended high-rise allows independent top-down expansion

UN Center Vienna
built project
Architect: J Staber
Federal Reserve Bank, Minneapolis

Architect: Gunnar Birkerts

- Parabolic suspenders are supported by 2 towers
- Top trusses resist lateral suspender thrust
- Floors below parabola are suspended
- Floors above parabola are supported by columns
- Support type is expressed on the facade
Westcoast Transmission Tower, Vancouver

Architect: Rhone & Iredale
Engineer: Bogue Babicki

Concrete core wall thickness \(t = 1' \)
Suspennder cables \(2 \phi 2 7/8'' \)
Guy cables \(2 \phi 2 7/8'' + 2 \phi 2 1/2'' \)
Average wind pressure (80mph, Exposure B) \(P = 30 \text{ psf} \)

Live load reductions
Beam: \(R = 50 \% \)
Suspender: \(R = 60 \% \)

Gravity loads
Concrete slab \(= 60 \text{ psf} \)
Partitions \(= 20 \text{ psf} \)
Framing \(= 15 \text{ psf} \)
Floor/ceiling \(= 5 \text{ psf} \)
DL \(= 100 \text{ psf} \)

Beam live load
\(0.5 \text{ (50)} \) LL = 25 psf

Suspender live load
\(0.4 \text{ (50)} \) LL = 20 psf

Total loads:
Beam \(= 125 \text{ psf} \)
Suspender \(= 120 \text{ psf} \)
Uniform beam load
\[w = 125 \text{ psf} \times 12'/1000 \]
\[w = 1.5 \text{ klf} \]

Beam bending
\[M = wL^2/8 = 1.5 \times 36^2/8 \]
\[M = 243 \text{ k' } \]
\[S = M/F_b = 243 \times 12/22 \]
\[S = 133 \text{ in}^3 \]

Use W21\times73
\[S = 151 > 133 \]

Suspender load
\[P = 13 \times 120 \text{ psf} \times [18^2 + 18 \times (18+9)/2]/1000 \]
\[P = 885 \text{ k} \]

Suspender cross section (twin 2 7/8”, 70% metallic)
\[A = 2 \pi 0.7(2.875/2)^2 \]
\[A = 9 \text{ in}^2 \]

Suspender stress
\[f = P/A = 885/9 \]
\[f = 98 \text{ ksi} \]

Guy force (from vector graph)
\[P = 1252 \text{ k} \]

Guy cross section (2 suspenders + 2 - 2.5’ strands)
\[A = 9 \text{ in}^2 + 2\pi 0.7(2.5/2)^2 \]
\[A = 15.9 \text{ in}^2 \]

Guy stress
\[f = P/A = 1252/15.9 \]
\[f = 79 \text{ ksi} \]
Outrigger beam

Compression (from vector graph)

Try w36x230

Axial stress

\[f_a = \frac{P}{A} = \frac{885}{67.6} \]

\[f_a = 13.1 \text{ ksi} \]

Bending stress

\[f_b = \frac{M}{S} = \frac{243k'x12''}{837} \]

\[f_b = 3.48 \text{ ksi} \]

Beam radius of gyration

\[r = \left(\frac{I}{A} \right)^{1/2} = \left(\frac{15000}{67.6} \right)^{1/2} \]

\[r = 14.9'' \]

Slenderness ratio (y-direction braced by floor)

\[kL/r = \frac{36'x12''}{14.9} \]

\[kL/r = 29 \]

Allowable buckling stress

\[F_a = 20 \text{ ksi} \]

Check combined stress

\[\frac{f_b}{F_b} + \frac{f_a}{F_a} \leq 1 \]

\[\frac{3.48}{22} + \frac{13.1}{20} = 0.81 \]

\[0.81 < 1 \]
<table>
<thead>
<tr>
<th>K_I</th>
<th>F_y (ksi)</th>
<th>F_y (ksi)</th>
<th>K_I</th>
<th>F_y (ksi)</th>
<th>K_I</th>
<th>F_y (ksi)</th>
<th>K_I</th>
<th>F_y (ksi)</th>
<th>K_I</th>
<th>F_y (ksi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21.56</td>
<td>19.11</td>
<td>2</td>
<td>21.52</td>
<td>19.03</td>
<td>3</td>
<td>21.48</td>
<td>18.95</td>
<td>4</td>
<td>21.44</td>
</tr>
<tr>
<td>5</td>
<td>21.39</td>
<td>18.78</td>
<td>6</td>
<td>21.35</td>
<td>18.70</td>
<td>7</td>
<td>21.30</td>
<td>18.61</td>
<td>8</td>
<td>21.25</td>
</tr>
<tr>
<td>9</td>
<td>21.21</td>
<td>18.44</td>
<td>11</td>
<td>21.10</td>
<td>18.26</td>
<td>12</td>
<td>21.05</td>
<td>18.17</td>
<td>13</td>
<td>21.00</td>
</tr>
<tr>
<td>15</td>
<td>20.89</td>
<td>17.99</td>
<td>16</td>
<td>20.83</td>
<td>17.81</td>
<td>17</td>
<td>20.78</td>
<td>17.71</td>
<td>18</td>
<td>20.72</td>
</tr>
<tr>
<td>20</td>
<td>20.60</td>
<td>17.43</td>
<td>21</td>
<td>20.54</td>
<td>17.33</td>
<td>22</td>
<td>20.48</td>
<td>17.24</td>
<td>23</td>
<td>20.41</td>
</tr>
<tr>
<td>25</td>
<td>20.28</td>
<td>16.94</td>
<td>26</td>
<td>20.22</td>
<td>16.84</td>
<td>27</td>
<td>20.15</td>
<td>16.74</td>
<td>28</td>
<td>20.00</td>
</tr>
<tr>
<td>35</td>
<td>19.58</td>
<td>15.90</td>
<td>36</td>
<td>19.50</td>
<td>15.79</td>
<td>37</td>
<td>19.42</td>
<td>15.69</td>
<td>38</td>
<td>19.35</td>
</tr>
</tbody>
</table>

$F_y = 36$ ksi

Table C-50

For Compression Members of 50-ksi Specified Yield Stress Steel

<table>
<thead>
<tr>
<th>K_I</th>
<th>F_y (ksi)</th>
<th>F_y (ksi)</th>
<th>K_I</th>
<th>F_y (ksi)</th>
<th>K_I</th>
<th>F_y (ksi)</th>
<th>K_I</th>
<th>F_y (ksi)</th>
<th>K_I</th>
<th>F_y (ksi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>29.94</td>
<td>25.69</td>
<td>2</td>
<td>29.87</td>
<td>25.55</td>
<td>3</td>
<td>29.80</td>
<td>25.40</td>
<td>4</td>
<td>29.73</td>
</tr>
<tr>
<td>5</td>
<td>29.66</td>
<td>25.11</td>
<td>6</td>
<td>29.58</td>
<td>24.96</td>
<td>7</td>
<td>29.50</td>
<td>24.81</td>
<td>8</td>
<td>29.42</td>
</tr>
<tr>
<td>15</td>
<td>28.80</td>
<td>23.55</td>
<td>16</td>
<td>28.71</td>
<td>23.39</td>
<td>17</td>
<td>28.61</td>
<td>23.22</td>
<td>18</td>
<td>28.51</td>
</tr>
<tr>
<td>20</td>
<td>28.30</td>
<td>22.72</td>
<td>21</td>
<td>28.19</td>
<td>22.55</td>
<td>22</td>
<td>28.08</td>
<td>22.37</td>
<td>23</td>
<td>27.97</td>
</tr>
<tr>
<td>25</td>
<td>27.75</td>
<td>21.85</td>
<td>26</td>
<td>27.63</td>
<td>21.67</td>
<td>27</td>
<td>27.52</td>
<td>21.49</td>
<td>28</td>
<td>27.40</td>
</tr>
<tr>
<td>30</td>
<td>27.15</td>
<td>20.94</td>
<td>31</td>
<td>27.03</td>
<td>20.75</td>
<td>32</td>
<td>26.90</td>
<td>20.56</td>
<td>33</td>
<td>26.77</td>
</tr>
<tr>
<td>40</td>
<td>25.83</td>
<td>19.01</td>
<td>41</td>
<td>25.60</td>
<td>18.70</td>
<td>42</td>
<td>25.37</td>
<td>18.41</td>
<td>43</td>
<td>25.13</td>
</tr>
</tbody>
</table>

AISC table, copyright © American Institute of Steel Construction Inc. Reprinted with permission of AISC. All rights reserved
Overtum moment (30 psf wind pressure)
\[M = 30 \left[\frac{36(30+144+50)^2}{2} + 2 \times 36 \times 144(30+72) \right] / 1000 = 58,821 \text{ k }' \]

Core moment of Inertia \(I \)
\[I = (B^4-b^4)/12 - A y^2 = 36^4 - 34^4) / 12 - 2 \times 6 \times 18^2 \]
\[I = 24.719 \text{ ft}^4 \]

Bending stress \(f_b \)
\[f_b = \frac{M c / I}{18} = \frac{58.821 \text{ k}' \times 18}{24,719 \text{ ft}^4} = 42.83 \text{ ksf} \]
\[f_b = 42.83 \text{ ksf} \times 1000 / 144 \]
\[f_b = 297 \text{ psi} \]

Dead load (13 stories @ 100 psf)
\[P = 13 \times 100 \text{ psf} \times 108^2 \]
\[P = 15,163,200 \# \]
\[f_c = \frac{P}{A} = \frac{15,163,200}{[2(36+30)144]} \]
\[f_c = 798 \text{ psi} > 297 \]
Overbeek House
Rotterdam ~ 90’x90’ - 11 stories
Architect: Verbruggen & Goldsmidt
Engineer: Aronsohn
Hong Kong Shanghai Bank
Architect: Norman Foster
Engineer: Ove Arup

Fig. 7
Levels 13-28 floor plan

Fig. 11
Basement north-south section
Assume
35 stories
Max. 8 floors per stack
Typical story height $h = 12.8'$
Ground floor story height $h = 24'$
Wind load $P = 3.8$ kPa $P = 80$ psf
HK statutory wind load varies from $P = 1.2$ kPa @ ground to $P = 4.3$ kPa @ 140 m)
Gravity load
$DL = 90$ psf
$LL = 63$ psf (3kN/m2)
$\Sigma = 153$ psf
Masts: 17'x16' (5.1x4.8m)
4 pipes, max. $\phi 55''x3.9''$ thick (1400x100mm)
Hangers: max. $\phi 16''x2.4''$ thick pipes (400x60mm)
Finite Element analysis of mast
Base shear (per mast pipe, 8 pipes/bay)

\[V = 80 \text{psf} \times 53' \times 590' / (8 \times 1000) \]

\[V = 313 \text{k} \]

Pipe bending moment

\[M = V \frac{h}{2} = 313 \times 12' \times 24' / 2 \]

\[M = 45072 \text{k}'' \]

Section modulus (\(S = \pi (D^4 - d^4) / 32D \))

\[S = \pi (55^4 - 47.2^4) / (32 \times 55) \]

\[S = 7474 \text{in}^3 \]

Bending stress

\[f_b = \frac{M}{S} = \frac{45072}{7474} \]

\[f_b = 6.0 \text{ksi} \]

Overturn moment (per bay)

\[M = 80 \text{psf} \times 53' \times 590'^2 / (2 \times 1000) \]

\[M = 73,797 \text{k}'' \]

Lateral load (per pipe, 4 pipes/mast)

\[P = \frac{M}{4B} = \frac{73797}{4 \times 126'} \]

\[P = 146 \text{k} \]

Combined axial load

\[\sum P = 7450 + 146 \]

\[\sum P = 7596 \text{k} \]

Pipe cross section area

\[A = \pi (D^2 - d^2) / 4 = \pi (55^2 - 47.2^2) / 4 \]

\[A = 626 \text{in}^2 \]

Pipe axial stress

\[f_a = \frac{P}{A} = 7596/626 \]

\[f_a = 12.1 \text{ksi} \]

Tributary hanger area

\[A = 55' \times 27' \]

\[A = 1485 \text{ft}^2 \]
F_y = 36 ksi
Pipe radius of gyration
\[r = \left(\frac{D^2 + d^2}{4} \right)^{1/2} = \left(\frac{55^2 + 47.2^2}{4} \right)^{1/2} \]
r = 18”

Pipe slenderness ratio (KL=1.2x24 = 29’)
\[KL/r = 29’ \times 12’/18” \]
KL/r = 19

Allowable buckling stress (from AISC table)
\[F_a = 20.7 \text{ ksi} \]

Check combined stress \(\left(\frac{f_a}{F_a} + \frac{f_b}{F_b} \right) \leq 1 \)
\[\frac{12.1}{20.7} + \frac{6.0}{22} = 0.86 \]
0.86 < 1, ok

Max. hanger load (8 floors)
\[P = 8 \times 153 \text{ psf} \times 1485 \text{ ft}^2/1000 \]
P = 1818k

Hanger cross section \(A = \pi \left(\frac{D^2 - d^2}{4} \right) \)
\[A = \pi \left(16^2 - 11.2^2 \right)/4 \]
A = 103 in²

Hanger stress
\[f_a = \frac{P}{A} = \frac{1818}{103} \]
f_a = 17.7 ksi

Hanger length per stack (8 stories)
\[L = 8 \times 12.8' \times 12” \]
L = 1229’

Hanger elongation \(\Delta L = \frac{PL}{EA} = \frac{f L}{E} \)
\[\Delta L = 17.1 \text{ ksi} \times 1229” / 30,000 \]
\[\Delta L = 0.7” \]

Mast shortening
\[\Delta L = 12.1 \text{ ksi} \times 1229” / 30,000 \]
\[\Delta L = 0.5” \]

Differential deflection
\[\Delta L = 0.7 + 0.5 \]
\[\Delta L = 1.2” \]

Note: adjust hanger for DL deflection

From last page:

Tributary hanger area
\[A = 1485 \text{ ft}^2 \]

Pipe bending stress
\[f_b = 6.0 \text{ ksi} \]

Pipe axial stress
\[f_a = 12.1 \text{ ksi} \]
suspend